Modelling Nuclear Effects in Neutrino Scattering

Tina Leitner
Luis Alvarez-Ruso, André Peshier, Ulrich Mosel

Institut für Theoretische Physik

Overview:
- Motivation & Introduction
- Neutrino Nucleon Reactions
- BUU Transport Model
- Nuclear Effects in νA Scattering
- Summary & Outlook
Motivation & Introduction

- past, current & future experiments
 - neutrino oscillations ✓
 - neutrino mass ✓
 - precision measurement of oscillation parameters ✗
 - CP violation ✗

- problems
 - uncertainties due to neutrino cross sections & nuclear effects → detector response
 - neutrino energy reconstruction
 - proposed experiment: MINERvA

⇒ better understanding of nuclear effects is crucial for existing & future neutrino experiments
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:
 - $\nu_l N \rightarrow l^- X$

 with consideration of
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width

\[\Gamma \rightarrow \Gamma_{tot}^{med} = \tilde{\Gamma} + \Gamma_{coll} \]

- propagation of final state X within **BUU transport model** with consideration of FSI

- most general: all neutrino flavors, all nuclei, CC & NC
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:

 $\nu_l N \rightarrow l^- X$

 with consideration of
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width

 $\Gamma \rightarrow \Gamma_{\text{tot}}^{\text{med}} = \tilde{\Gamma} + \Gamma_{\text{coll}}$

- propagation of final state X within **BUU transport model** with consideration of FSI

- most general: all neutrino flavors, all nuclei, CC & NC
Weak Interaction Theory

- **interaction Lagrangian:**

\[
\mathcal{L}_{\text{int}} = -\frac{g}{2\sqrt{2}} \left((J_{\mu}^{CC} + j_{\mu}^{CC}) W^\mu + \text{h. c.} \right) - \frac{g}{2 \cos \theta_W} (J_{\mu}^{NC} + j_{\mu}^{NC}) Z^\mu + e (J_{\mu}^{em} + j_{\mu}^{em}) A^\mu
\]

- **leptonic currents:**

\[
\begin{align*}
J_{\mu}^{CC} &= \sum_{l=e,\mu,\tau} \bar{\nu}_l \gamma_\mu (1 - \gamma_5) l \\
J_{\alpha}^{NC} &= \frac{1}{2} \bar{\nu}_l \gamma_\alpha (1 - \gamma_5) \nu_l - \frac{1}{2} (1 - 2 \sin^2 \theta_W) \bar{\nu}_l \gamma_\alpha (1 - \gamma_5) l + \sin^2 \theta_W \bar{\nu}_l \gamma_\alpha (1 + \gamma_5) l
\end{align*}
\]

- **concentrate on CC in the following, but note:**

 - NC is sensitive to the isoscalar strange quark contribution to the nucleon spin
 - in particular to the strange axial vector form factor
 - complementary to parity violating electron scattering or DIS of polarized leptons
Neutrino Nucleon Scattering

- **elementary processes:** \(\sigma = \sigma(QE) + \sigma(RES) + \sigma(Non - RES/DIS) \)

- dominated by **QE & Δ resonance**

CC:

\[
\begin{align*}
\nu n &\rightarrow l^- p \\
\nu n &\rightarrow l^- \Delta^+ \\
\nu p &\rightarrow l^- \Delta^{++}
\end{align*}
\]
Quasielastic Scattering

- hadronic current for $\nu_l n \rightarrow l^- p$

$$J^\alpha = \cos \theta_C \bar{u}_p \left(\gamma^\alpha F_1^V(Q^2) + \frac{i \sigma_{\alpha\beta} q_\beta}{2M} F_2^V(Q^2) + \gamma^\mu \gamma^5 F_A(Q^2) + \frac{q^\alpha \gamma^5}{M} F_P(Q^2) \right) u_n$$

CVC

$$F_{1,2}^V(Q^2) = F_{1,2}^p(Q^2) - F_{1,2}^n(Q^2)$$

PCAC

$$F_P(Q^2) = \frac{2M^2}{m_\pi^2 + Q^2} F_A(Q^2)$$

- BBA-2003 parametrization for $F_{1,2}^{n,p}$ and

$$F_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$$
Resonance Production

- hadronic current for $\nu_l n \rightarrow l^- \Delta^+$

\[J_\alpha = \cos \theta C \bar{\psi}^\beta(p') D_{\beta\alpha} u(p) \]

with the Rarita-Schwinger spinor $\bar{\psi}^\beta(p')$ and

\[
D_{\beta\alpha} = \left(\frac{C^V_3}{M} (g_{\alpha\beta} q - q_\beta \gamma_\alpha) + \frac{C^V_4}{M^2} (g_{\alpha\beta} q \cdot p' - q_\beta p'_\alpha) + \frac{C^V_5}{M^2} (g_{\alpha\beta} q \cdot p - q_\beta p_\alpha) + g_{\alpha\beta} C^V_6 \right) \gamma_5 \\
+ \frac{C^A_3}{M} (g_{\alpha\beta} q - q_\beta \gamma_\alpha) + \frac{C^A_4}{M^2} (g_{\alpha\beta} q \cdot p' - q_\beta p'_\alpha) + C^A_5 g_{\alpha\beta} + \frac{C^A_6}{M^2} q_\beta q_\alpha
\]

CVC & M_{1+} dominance

\[
C^V_4 \sim C^V_3 \quad C^V_5 = 0 \quad C^V_6 = 0 \\
C^V_3 \rightarrow eN
\]

PCAC

\[
C^A_6 \sim C^A_5
\]

parametrization

\[
C^V_3 \\
C^A_5 \quad C^A_4 \quad C^A_3
\]

- Δ width: p-wave $\Gamma \sim q_{CM}^3$
Resonance Production Cross Section

- double differential cross section $\frac{d^2\sigma}{dQ^2dW}$ for $\nu_\mu p \rightarrow \mu^- \Delta^{++}$

![Graphs showing the double differential cross section for different values of Q^2 and W.](image)
Neutrino Nucleus Scattering

- \(\nu A \) reaction is factorized using **impulse approximation**:
 - \(\nu_l N \rightarrow l^- X \)
 - With consideration of
 - Fermi motion
 - Pauli blocking
 - Binding energies
 - In-medium modified \(\Delta \) width
 - \[\Gamma \rightarrow \Gamma_{tot}^{med} = \tilde{\Gamma} + \Gamma_{coll} \]

- Propagation of final state \(X \) within **BUU transport model** with consideration of FSI

- Most general: all neutrino flavors, all nuclei, CC & NC
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:
 - $\nu_l N \rightarrow l^- X$
 - with consideration of:
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width
 - $\Gamma \rightarrow \Gamma_{med}^{tot} = \tilde{\Gamma} + \Gamma_{coll}$

- propagation of final state X within **BUU transport model** with consideration of FSI

- most general: all neutrino flavors, all nuclei, CC & NC
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:
 - $\nu_l N \rightarrow l^- X$
 - with consideration of
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width
 $$\Gamma \rightarrow \Gamma^{med}_{tot} = \tilde{\Gamma} + \Gamma_{coll}$$

- propagation of final state X within **BUU transport model** with consideration of FSI

- most general: all neutrino flavors, all nuclei, CC & NC
BUU Transport Model

- description of heavy ion collisions, $e A$, γA and νA reactions with one code
- well tested against experimental data, in particular for $\gamma^{(*)} A$
- coupled channel semiclassical transport model

- **Boltzmann-Uehling-Uhlenbeck equation**
 for each particle species i ($i = N, R, \pi, \rho, K, \ldots$):

$$\frac{df_i}{dt} = (\partial_t + (\nabla_{\vec{p}} H) \nabla_{\vec{r}} - (\nabla_{\vec{r}} H) \nabla_{\vec{p}}) f_i(\vec{r}, \vec{p}, t) = I_{\text{coll}} [f_1, \ldots, f_i, \ldots, f_M]$$

Hamilton function: $H = \sqrt{(\mu + U_s)^2 + \vec{p}^2}$

- f_i : phase space density

 mean field for baryons
 Skyrme type with momentum dependence

- set of BUU equations coupled via I_{coll} and mean field
- off-shell transport, in-medium widths
BUU Transport Model – Collision Term

- **collision integral** accounts for changes in f_i due to 2 particle collisions:
 - elastic and inelastic scattering (coupled channels)
 - Pauli blocking for fermions

- **FSI**
 - absorption
 - charge exchange
 - redistribution of energy
 - production of new particles

- most important scattering processes:

 \[
 \begin{align*}
 NN & \leftrightarrow NN & NR & \leftrightarrow NR' \\
 NN\pi & \leftrightarrow NN & mB & \leftrightarrow R, \text{ in particular } \pi N \leftrightarrow \Delta \\
 NN & \leftrightarrow NR & \pi N & \leftrightarrow \pi N \\
 NN & \leftrightarrow \Delta \Delta & \pi N & \leftrightarrow \pi \pi N
 \end{align*}
 \]
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:
 - $\nu_l N \rightarrow l^- X$
 - with consideration of:
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width
 \[\Gamma \rightarrow \Gamma_{tot}^{med} = \tilde{\Gamma} + \Gamma_{coll} \]

- propagation of final state X within **BUU transport model** with consideration of FSI

- most general: all neutrino flavors, all nuclei, CC & NC
Neutrino Nucleus Scattering

νA reaction is factorized using impulse approximation:

- $\nu_l N \rightarrow l^- X$

 with consideration of

 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width

 $$\Gamma \rightarrow \Gamma_{med}^{tot} = \tilde{\Gamma} + \Gamma_{coll}$$

- propagation of final state X within **BUU transport model** with consideration of FSI

most general: all neutrino flavors, all nuclei, CC & NC

Tina Leitner, Universität Giessen

Modelling Nuclear Effects in Neutrino Scattering
Neutrino Nucleus Scattering

- νA reaction is factorized using **impulse approximation**:
 - $\nu_l N \rightarrow l^- X$
 - with consideration of
 - Fermi motion
 - Pauli blocking
 - binding energies
 - in-medium modified Δ width
 - $\Gamma \rightarrow \Gamma_{med}^{tot} = \tilde{\Gamma} + \Gamma_{coll}$

- propagation of final state X within **BUU transport model** with consideration of FSI

exemplarily: $\nu_\mu ^{56}\text{Fe} \rightarrow \mu^- X$ for $E_\nu = 0.4 - 2$ GeV
Inclusive Cross Section \(\nu_\mu^{56}\text{Fe} \rightarrow \mu^- X \)

- double differential cross sections per nucleon: \(\frac{d^2\sigma}{dE_\mu dQ^2 A} \)
- inclusive cross section:

\[
d^2\sigma/(dE_\mu dQ^2 A) \left[10^{-38} \text{ cm}^2/\text{GeV}^3 \right]
\]

\(E_\mu = 0.41 \text{ GeV} \)
Pion Production $\nu_\mu^{56}\text{Fe} \rightarrow \mu^- \pi X$

- $E_\mu = 0.41$ GeV, $Q^2 = 0.21$ GeV2
 - π^+ without FSI
 - π^+ with FSI

- $E_\mu = 0.41$ GeV, $Q^2 = 0.61$ GeV2
 - π^+ without FSI
 - π^+ with FSI
 - Δ
 - QE

- $E_\mu = 0.41$ GeV, $Q^2 = 0.21$ GeV2
 - π^0 without FSI
 - π^0 with FSI

- $E_\mu = 0.41$ GeV, $Q^2 = 0.61$ GeV2
 - π^0 without FSI
 - π^0 with FSI
 - Δ
 - QE
Pion Momentum Distribution $\nu_\mu^{56}\text{Fe} \rightarrow \mu^- \pi X$

$E_\nu = 1.2\text{ GeV}, E_\mu = 0.41\text{ GeV}, Q^2 = 0.21\text{ GeV}^2$

$E_\nu = 1.2\text{ GeV}, E_\mu = 0.41\text{ GeV}, Q^2 = 0.61\text{ GeV}^2$

π^+

π^0

$\sigma/(d\pi dE_\mu dQ^2 A) \times 10^{-38}\text{ cm}^2/\text{GeV}^4$

$p_\pi [\text{GeV}]$

E. Leitner, Universität Giessen

Modelling Nuclear Effects in Neutrino Scattering
Nucleon Knockout $\nu_\mu^{56}\text{Fe} \rightarrow \mu^- N X$

$E_\nu = 0.41 \text{ GeV}, Q^2 = 0.21 \text{ GeV}^2$

$E_\mu = 0.41 \text{ GeV}, Q^2 = 0.61 \text{ GeV}^2$

$E_\nu = 0.41 \text{ GeV}, Q^2 = 0.21 \text{ GeV}^2$

$E_\mu = 0.41 \text{ GeV}, Q^2 = 0.61 \text{ GeV}^2$
Summary & Outlook

- **neutrino nucleus scattering**
 - impulse approximation
 - 2 steps: νN & FSI

- **neutrino nucleon reactions**
 - dominated by quasielastic scattering & Δ production
 - vector form factors obtained from electron scattering

- **BUU model**
 - well approved model for eA, γA → extended to νA
 - all important in-medium effects are taken into account

- **nuclear effects in νA scattering**
 - inclusive scattering, pion production & nucleon knockout
 - in-medium effects, in particular FSI, are not negligible

- **work in progress & future plans**
 - inclusion of higher resonances & non-resonant background
 - extraction of better N-Δ transition form factors from new eA data