Theory of Hypernuclei

W.M. Alberico

Dip. di Fisica Teorica and INFN, Torino, Italy

STRANGENESS, SPIN and QGP

European Graduate School "Complex Systems of Hadrons and Nuclei" (Copenhagen, Giessen, Helsinky, Jyväsylä, Torino)

Villa Gualino, Torino, 9-15 October, 2005

Lecture II

Summary

- 1. Introduction
- 2. Hypernuclear structure
- 3. YN and NN interactions
- 4. Weak hypernuclear decay
- Weak decay modes of Λ-hypernuclei
- Mesonic decay
- Non-mesonic decay
- One-body induced ($\Lambda N \rightarrow NN$)
- Two-body induced $(\Lambda NN \to NNN)$
- Decay of polarized \(\Lambda\)-hypernuclei

- 6. Theoretical models for weak hypernuclear decay
- Wave-function method
- Polarization propagatore method
- i) Phenomenological approach
- ii) Microscopic approach
- 7. Experiment versus theory
- 8. The ratio Γ_n/Γ_p
- 9. s-shell hypernuclei and $\Delta I = 1/2$ rule
- 10. Non-mesonic decay of polarized Λ-hypernuclei

Theoretical Models for the decay rates

Wave-function Method

Weak effective Hamiltonian for $\Lambda \to \pi N$ decay:

$$\mathcal{H}^{W}_{\Lambda\pi N} = iGm_{\pi}^{2}\overline{\psi}_{N}(A+B\gamma_{5})\vec{\tau}\cdot\vec{\phi}_{\pi}\psi_{\Lambda},$$

hyperon is assumed to be an isospin spurion with I = 1/2, $I_z = -1/2$. amplitude) are fixed on the free Λ decay. To enforce the $\Delta I = 1/2$ rule the where $G = 2.211 \cdot 10^{-7} / m_{\pi}^2$, A = 1.06 (PV amplitude) and B = -7.10 (PC

 $\Gamma_{\Lambda}^{\rm free} = \Gamma_{\pi^-}^{\rm free} + \Gamma_{\pi^0}^{\rm free}$ is: In non-relativistic approximation, the free Λ decay width

$$\Gamma_{\alpha}^{\text{free}} = c_{\alpha} (Gm_{\pi}^2)^2 \int \frac{d\vec{q}}{(2\pi)^3 2\omega(\vec{q})} \, 2\pi \, \delta[E_{\Lambda} - \omega(\vec{q}) - E_{N}] \left(S^2 + \frac{P^2}{m_{\pi}^2} \vec{q}^2 \right),$$

with $c_{\alpha} = 1$ for Γ_{π^0} and $c_{\alpha} = 2$ for Γ_{π^-} , S = A, $P = m_{\pi}B/(2m_N)$.

One finds:

$$\Gamma_{\alpha}^{\text{free}} = c_{\alpha} (Gm_{\pi}^2)^2 \frac{1}{2\pi} \frac{m_N q_{\text{c.m.}}}{m_{\Lambda}} \left(S^2 + \frac{P^2}{m_{\pi}^2} q_{\text{c.m.}}^2 \right)$$

momentum in the center-of-mass frame. which reproduces the observed rates. $q_{\rm c.m.} \simeq 100 \,\mathrm{MeV}$ is the pion

Finite nucleus

Mesonic width $\Gamma_M = \Gamma_{\pi^-} + \Gamma_{\pi^0}$

$$\Gamma_{\alpha} = c_{\alpha} (Gm_{\pi}^{2})^{2} \sum_{N \neq F} \int \frac{d\vec{q}}{(2\pi)^{3} 2\omega(\vec{q})} 2\pi \delta[E_{\Lambda} - \omega(\vec{q}) - E_{N}]$$

$$\times \left\{ S^{2} \left| \int d\vec{r} \phi_{\Lambda}(\vec{r}) \phi_{\pi}(\vec{q}, \vec{r}) \phi_{N}^{*}(\vec{r}) \right|^{2} + \frac{P^{2}}{m_{\pi}^{2}} \left| \int d\vec{r} \phi_{\Lambda}(\vec{r}) \vec{\nabla} \phi_{\pi}(\vec{q}, \vec{r}) \phi_{N}^{*}(\vec{r}) \right|^{2} \right\}$$

the Klein-Gordon eq. with πN optical potential V_{opt} : model. Pion wave function ϕ_{π} corresponds to outgoing wave solution of The Λ and nucleon wave functions ϕ_{Λ} and ϕ_{N} obtainable within a shell

$$\left\{ \vec{\nabla}^2 - m_{\pi}^2 - 2\omega V_{\text{opt}}(\vec{r}) + [\omega - V_C(\vec{r})]^2 \right\} \phi_{\pi}(\vec{q}, \vec{r}) = 0$$

Non-mesonic width

the pseudoscalar $(\pi, \eta \text{ and } K)$ and vector $(\rho, \omega \text{ and } K^*)$ octets Weak transition $\Lambda N \to NN$ proceeds via the exchange of virtual mesons of

OPE non-relativistic $\Lambda N \to NN$ transition potential:

$$V_{\pi}(\vec{q}) = -Gm_{\pi}^{2} \frac{g_{NN\pi}}{2m_{N}} \left(A + \frac{B}{2\bar{m}} \vec{\sigma}_{1} \cdot \vec{q} \right) \frac{\vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2} + m_{\pi}^{2}} \vec{\tau}_{1} \cdot \vec{\tau}_{2}$$

where $\bar{m} = (m_{\Lambda} + m_N)/2$.

Large momenta ($\simeq 420 \text{ MeV}$) exchanged in the $\Lambda N \to NN$ transition: ⇒ heavier mesons contribute, e.g.

$$\begin{split} V_{\rho}(\vec{q}) &= G m_{\pi}^2 \left[g_{NN\rho}^V - \frac{(\alpha + \beta)(g_{NN\rho}^V + g_{NN\rho}^T)}{4m_n m} (\vec{\sigma}_1 \times \vec{q}) \cdot (\vec{\sigma}_2 \times \vec{q}) \alpha \right. \\ &+ i \frac{\epsilon(g_{NN\rho}^V + g_{NN\rho}^T)}{2m_m} (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{q} \right] \frac{\vec{\tau}_1 \cdot \vec{\tau}_2}{\vec{q}^2 + m_{\rho}^2} \end{split}$$

Most general OME potential Weak coupling constants α , β and ϵ must be evaluated theoretically.

$$V(\vec{r}) = \sum_{m} V_{m}(\vec{r}) = \sum_{m} \sum_{\alpha} V_{m}^{\alpha}(r) \hat{O}^{\alpha}(\hat{r}) \hat{I}_{m},$$

where $m = \pi, \eta, K, \rho, \omega, K^*$; the spin operator \hat{O}^{α} is:

$$\hat{O}^{\alpha}(\hat{r}) = \begin{cases} \hat{1} & \text{central spin -- independent,} \\ \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} & \text{central spin -- dependent,} \\ S_{12}(\hat{r}) & \text{tensor,} \\ \vec{\sigma}_{2} \cdot \hat{r} & \text{PV for pseudoscalar mesons,} \\ (\vec{\sigma}_{1} \times \vec{\sigma}_{2}) \cdot \hat{r} & \text{PV for vector mesons,} \end{cases}$$

with

$$S_{12}(\hat{ec{r}}) = 3(ec{\sigma}_1 \cdot \hat{ec{r}})(ec{\sigma}_2 \cdot \hat{ec{r}}) - ec{\sigma}_1 \cdot ec{\sigma}_2$$

The isospin operator \hat{I}_m is:

$$\hat{I}_m = \begin{cases} \hat{1} & \text{isoscalars mesons } (\eta, \omega) \\ \vec{\tau}_1 \cdot \vec{\tau}_2 & \text{isovector mesons } (\pi, \rho) \\ \hat{1} \pm \vec{\tau}_1 \cdot \vec{\tau}_2 & \text{isodoublet mesons } (K, K^*) \end{cases}$$

One—body induced non—mesonic decay rate (initial hypernucleus at rest)

$$\Gamma_1 = \int \frac{d\vec{p}_1}{(2\pi)^3} \int \frac{d\vec{p}_2}{(2\pi)^3} 2\pi \, \delta(\text{E.C.}) \overline{\sum} |\mathcal{M}(\vec{p}_1, \vec{p}_2)|^2,$$

with

$$\delta(\text{E.C.}) = \delta \left(m_H - E_R - 2m_N - \frac{\vec{p}_1^2}{2m_N} - \frac{\vec{p}_2^2}{2m_N} \right);$$

and

$$\mathcal{M}(\vec{p}_1, \vec{p}_2) \equiv \langle \Psi_R; N(\vec{p}_1)N(\vec{p}_2)|T_{\Lambda N \to NN}|\Psi_H \rangle$$

describe the hypernuclear wave function Ψ_H . system and over spin and isospin third components of the outgoing nucleons. In shell model calculations the weak-coupling scheme is used to hypernuclear total spin and sum over quantum numbers of the residual The sum \sum indicates average over the third component of the

two-body amplitudes $\langle NN|V|\Lambda N\rangle$ of the OME potential. The many-body transition amplitude $\mathcal{M}(\vec{p}_1,\vec{p}_2)$ is expressed in terms of

Remarks:

- A decays from an orbital angular momentum l=0 state
- One can isolate the contributions of neutron—and proton—induced
- NN final state interactions and ΛN correlations can also be inplemented

Polarization Propagator Method

Weak effective hamiltonian for $\Lambda \to \pi N$ decay (again):

$$\mathcal{H}_{\Lambda\pi N}^{W} = iGm_{\pi}^{2}\overline{\psi}_{N}(A + B\gamma_{5})\vec{\tau} \cdot \vec{\phi}_{\pi}\psi_{\Lambda}.$$

width: start from imaginary part of the Λ self-energy: Alternative (and equivalent) approach to the calculation of the hyperon

$$\Gamma_{\Lambda} = -2 \operatorname{Im} \Sigma_{\Lambda}$$

in non-relativistic limit:

$$\Sigma_{\Lambda}(k) = 3i(Gm_{\pi}^{2})^{2} \int \frac{d^{4}q}{(2\pi)^{4}} \left(S^{2} + \frac{P^{2}}{m_{\pi}^{2}} \vec{q}^{2}\right) F_{\pi}^{2}(q) G_{N}(k-q) \frac{G_{\pi}(q)}{G_{\pi}(q)}$$

Nucleon propagator in the medium (includes the effect of binding):

$$G_{N}(p) = \frac{\theta(|\vec{p}| - k_{F})}{p_{0} - E_{N}(\vec{p}) - V_{N} + i\epsilon} + \frac{\theta(k_{F} - |\vec{p}|)}{p_{0} - E_{N}(\vec{p}) - V_{N} - i\epsilon}$$

Pion propagator reads:

$$G_{\pi}(q) = \frac{1}{q_0^2 - \vec{q}^2 - m_{\pi}^2 - \Sigma_{\pi}^*(q)}$$

approximation and beyond. Pion self-energy $\Sigma_{\pi}^*(q)$ evaluated in nuclear medium within RPA

the Λ self-energy is modified in the medium:

$$\Gamma_{\Lambda}(\vec{k}, \rho) = -6(Gm_{\pi}^{2})^{2} \int \frac{d\vec{q}}{(2\pi)^{3}} \theta(|\vec{k} - \vec{q}| - k_{F})$$
$$\times \theta(k_{0} - E_{N}(\vec{k} - \vec{q}) - V_{N}) \text{Im} \left[\alpha(q)\right]_{q_{0} = k_{0} - E_{N}(\vec{k} - \vec{q}) - V_{N}}$$

$$\begin{split} \alpha(q) &= \left(S^2 + \frac{P^2}{m_\pi^2} \vec{q}^2\right) F_\pi^2(q) G_\pi^0(q) + \frac{\tilde{S}^2(q) U_L(q)}{1 - V_L(q) U_L(q)} \\ &+ \frac{\tilde{P}_L^2(q) U_L(q)}{1 - V_L(q) U_L(q)} + 2 \frac{\tilde{P}_T^2(q) U_T(q)}{1 - V_T(q) U_T(q)} \end{split}$$

the effective weak $(\ddot{S},\,\ddot{P}_L,\,\ddot{P}_T)$ and strong $(V_L,\,V_T)$ interactions include π and ρ -exchange plus short range repulsive correlations

for p-h and Δ -h excitations and the irreducible 2p-2h polarization $U_L(q)$ and $U_T(q)$ contain the Lindhard functions (particle-hole propagator) propagator:

$$U_{L,T}(q) = U^{ph}(q) + U^{\Delta h}(q) + U_{L,T}^{2p2h}(q)$$

NB Decay width depends upon nuclear matter density

$$\rho = 2k_F^3/3\pi^2.$$

Figure 1: Lowest order terms for the Λ self-energy in nuclear matter.

Two different approaches for the evaluation of $U_{L,T}^{2p2h}(q)$:

- A. Phenomenological
- B. Microscopic

Im $\alpha(q)$ develops various contributions:

$$\operatorname{Im} \frac{U_{L,T}(q)}{1 - V_{L,T}(q)U_{L,T}(q)} = \frac{\operatorname{Im} U^{ph}(q) + \operatorname{Im} U^{\Delta h}(q) + \operatorname{Im} U^{2p2h}_{L,T}(q)}{|1 - V_{L,T}(q)U_{L,T}(q)|^2}$$

the three terms representing different decay mechanisms of the

 $\Gamma_M \propto \text{Im } U^{\Delta h}$

hypernucleus:

(part of mesonic width)

 $\Gamma_1 \propto \operatorname{Im} U^{ph}$

(non-mesonic, 1-body induced decay width)

 $\Gamma_2 \propto {
m Im}\, U^{2p2h}$

(non-mesonic, 2-body induced + part of mesonic width)

self-energy and polarization insertions; in the vertices: w=weak, s=strong. Figure 2: Schematic representation of the total Λ self-energy in terms of the π

Figure 3: One-body induced decay process in the language of particle-hole states.

to the Λ self-energy. Figure 4: Schematic relation between the one-body (upper panel) and two-body (lower panel) Λ decay amplitudes and the Imaginary part of specific contributions

Spin-isospin $NN \to NN$ and $\Lambda N \to NN$ interactions

potential: The $NN \to NN$ interaction can be described through the effective

$$G(r) = g(r)V(r).$$

goes to 1 as $r \to \infty$ Here g(r) is a two-body correlation function, which vanishes as $r \to 0$ and

V(r) is the meson exchange potential, which contains π and ρ exchange:

 $V = V_{\pi} + V_{\rho}$.
A practical an

(1982) 281]: A practical and realistic form for g(r) is [Oset, Toki, Weise, Phys.Rep. 83

$$g(r) = 1 - j_0(q_c r),$$

obtained from G-matrix calculations. The inverse of q_c is indicative of the MeV one gets a good reproduction of realistic NN correlation functions hard core radius of the interaction where j_0 is the Bessel spherical function of order 0. With $q_c = m_\omega \simeq 780$

Using this correlation function it is easy to get the effective interaction:

$$G_{NN \to NN}(q) = V_{\pi}(q) + V_{\rho}(q) + \frac{f_{\pi}^2}{m_{\pi}^2} \left\{ g_L(q) \hat{q}_i \hat{q}_j + g_T(q) (\delta_{ij} - \hat{q}_i \hat{q}_j) \right\} \sigma_i \sigma_j \vec{\tau} \cdot \vec{\tau}$$

where correlations are embodied in the functions g_L and g_T .

spin-longitudinal and a spin-transverse parts: The spin-isospin $NN \to NN$ interaction can be separated into a

$$G_{NN\to NN}(q) = \{V_L(q)\hat{q}_i\hat{q}_j + V_T(q)(\delta_{ij} - \hat{q}_i\hat{q}_j)\}\,\sigma_i\sigma_j\vec{\tau}\cdot\vec{\tau}$$

where:

$$V_L(q) = \frac{f_{\pi}^2}{m_{\pi}^2} \left\{ \vec{q}^2 F_{\pi}^2(q) G_{\pi}^0(q) + g_L(q) \right\}$$

$$V_T(q) = \frac{f_\pi^2}{m_\pi^2} \left\{ \vec{q}^2 C_\rho F_\rho^2(q) G_\rho^0(q) + g_T(q) \right\}$$

are the corresponding free meson propagators: $G_m^0 = 1/(q_0^2 - \vec{q}^2 - m_m^2)$. In the above, F_{π} and F_{ρ} are the πNN and ρNN form factors, G_{π} and G_{ρ}

spin-transverse): ΛN correlations, splits into a P-wave (again spin-longitudinal and The $\Lambda N \to NN$ transition potential, modified by the effect of the strong

$$G_{\Lambda N \to NN}(q) = \left\{ \tilde{P}_L(q) \hat{q}_i \hat{q}_j + \tilde{P}_T(q) (\delta_{ij} - \hat{q}_i \hat{q}_j) \right\} \sigma_i \sigma_j \vec{\tau} \cdot \vec{\tau}$$

with:

$$\tilde{P}_{L}(q) = \frac{f_{\pi}}{m_{\pi}} \frac{P}{m_{\pi}} \left\{ \vec{q}^{\,2} F_{\pi}^{\,2}(q) G_{\pi}^{\,0}(q) + g_{L}^{\,\Lambda}(q) \right\}$$

$$\tilde{P}_T(q) = \frac{f_\pi}{m_\pi} \frac{P}{m_\pi} g_T^{\Lambda}(q)$$

and an S-wave part:

$$\tilde{S}(q) = \frac{f_\pi}{m_\pi} S \left\{ F_\pi^2(q) G_\pi^0(q) - \tilde{F}_\pi^2(q) \tilde{G}_\pi^0(q) \right\} \mid \vec{q} \mid$$

A. Phenomenological 2p2h propagator

W.M.Alberico, A.De Pace, G.Garbarino, A.Ramos, PRC 61 (2000) 044314 [Ref.: A.Ramos, E.Oset, L.L.Salcedo, PRC 50 (1994), 2314

Momentum dependence of the imaginary part of $U_{L,T}^{2p2h}$ obtained from available phase-space:

$$\operatorname{Im} U_{L,T}^{2p2h}(q_0, \vec{q}; \rho) = \frac{P(q_0, \vec{q}; \rho)}{P(m_{\pi}, \vec{0}; \rho_{\text{eff}})} \operatorname{Im} U_{L,T}^{2p2h}(m_{\pi}, \vec{0}; \rho_{\text{eff}})$$

where $\rho_{\rm eff} = 0.75 \rho$ and

$$P(q_0, \vec{q};
ho) \propto \int \frac{d^4k}{(2\pi)^4} \operatorname{Im} U^{ph} \left(\frac{q}{2} + k;
ho\right) \operatorname{Im} U^{ph} \left(\frac{q}{2} - k;
ho\right) \theta \left(\frac{q_0}{2} \pm k_0\right)$$

pion–nucleus optical potential Moreover Im $U_{L,T}^{2p2h}(m_{\pi},\vec{0};\rho_{\text{eff}})$ can be fixed through the p-wave

Local Density Approximation

finite nuclei via the LDA. Calculation of the widths is performed in nuclear matter and extended to

A local Fermi sea of nucleons is introduced

$$k_F(\vec{r}) = \left\{ \frac{3}{2} \pi^2 \rho_A(\vec{r}) \right\}^{1/3}$$

Nuclear density assumed to be a Fermi distribution.

Decay width in finite nuclei is then obtained by:

$$\Gamma_{\Lambda} = \int dec{k} \, | ilde{\psi}_{\Lambda}(ec{k})|^2 \Gamma_{\Lambda}(ec{k})$$

where:

$$\Gamma_{\Lambda}(\vec{k}) = \int d\vec{r} |\psi_{\Lambda}(\vec{r})|^2 \Gamma_{\Lambda} \left[\vec{k}, \rho(\vec{r}) \right]$$

and $|\psi_{\Lambda}(k)|^2$ is Λ momentum distribution.

potential, which exactly reproduces the first two single particle eigenvalues The Λ wave function $\psi_{\Lambda}(\vec{r})$ is obtained from a Woods–Saxon Λ –nucleus $(s \text{ and } p \text{ } \Lambda \text{ levels})$ of the hypernucleus under analysis.

B. Microscopic approach

Microscopic evaluation of the 2p-2h propagator within the so-called bosonic loop expansion. For details see:

W.M.Alberico, A.De Pace, G.Garbarino, R.Cenni, NPA 668 (2000) 113

represent ring-dressed pion propagators. hole; (b) exchange; (c) and (d) self-energy-type; (e) and (f) correlation diagrams. Figure 5: Feynman diagrams for the polarization propagator in OBL: (a) particle— Only the first contribution to the ring expansion has been drawn. The dashed lines

Experiment versus theory

Partial and total decay rates

widths: Two ingredients are crucial to the determination of partial and total decay

- Short range correlations in NN interactions (g') and in $\Lambda N \to NN$ (g'_{Λ}) transition potential
- Choice of the A wave-function

scattering (realistic values within ordinary RPA scheme: $g' = 0.6 \div 0.7$). Short range correlations are only partly known from existing No information instead is available on g'_{Λ} . Gamow-Teller resonance and quasi-elastic transverse electron-nucleus phenomenology: in NN channel g' was constrained by, e.g., quenching of

decay widths ⇒ Fix both parameters on the basis of agreement with experimental

Figure 6: Dependence of the non-mesonic width on the Landau parameters g' and g'_{Λ} for $^{12}_{\Lambda}$ C. The experimental value from BNL[1991] (KEK[1995]) lies

Pace, Garbarino, Ramos, PRC 61 (2000) 044314]. different examples are obtained with Woods-Saxon wave functions of function with empirical frequency ω obtained from s-p energy shift The Λ wave function sensibly affects the calculation of decay rates: Woods-Saxon potential that reproduces the s and p Λ -levels [Alberico, De [Hasegawa, et al., PRC 53 (1996) 1210], wave functions from a [Dover, Gal, Millener, PRC 38 (1988) 2700], Harmonic Oscillator wave

Note: Mesonic width almost insensitive.

Table 1: Mass dependence of the hypernuclear weak decay rates.

$^{208}_{\Lambda}{ m Pb}$	$^{139}_{\Lambda}{ m La}$	$\Lambda_{68}^{ m V}$	$^{56}_{\Lambda}\mathrm{Fe}$	$^{40}_{\Lambda}\mathrm{Ca}$	$^{28}_{\Lambda}{ m Si}$	$^{12}_{\Lambda}\mathrm{C}$	$^{5}_{\Lambda}{ m He}$	$^{A+1}_{\Lambda}Z$
$1 \cdot 10^{-4}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	0.01	0.03	0.07	0.25	0.60	Γ_M
1.21	1.14	1.16	1.12	1.05	1.02	0.82	0.27	Γ_1
0.19	0.18	0.22	0.21	0.21	0.21	0.16	0.04	Γ_2
1.40	1.33	1.38	1.35	1.29	1.30	1.23	0.91	Γ_T

The ratio Γ_n/Γ_p

In OPE approximation, by assuming the $\Delta I = 1/2$ rule,

$$\left[\Gamma_n/\Gamma_p\right]^{\rm OPE} \simeq 0.05 \div 0.20$$

for all considered systems.

and medium hypernuclei but the OPE model reproduces fairly well the rates $\Gamma_1 = \Gamma_n + \Gamma_p$ for light For pure $\Delta I = 3/2$ transitions the OPE ratio can increase up to about 0.5,

Other ingredients to take into account:

- heavier mesons $(\rho, K, K^*, \omega, \eta)$
- direct quark mechanism
- two-nucleon induced mechanism
- nucleon final state interactions

improved the situation. heavy-meson-exchange (e.g. K) or direct quark contributions have Calculations with $\Lambda N \to NN$ transition potentials including

emitted meson, the three-body process are $\Lambda np \rightarrow nnp$ and a considerable and $\Lambda p \rightarrow np$. fraction of neutrons could come from this channel in addition to $\Lambda n \to nn$ process $\Lambda NN \to NNN$: by assuming quasi-deuteron absorption for the The analysis of the ratio Γ_n/Γ_p is influenced by the two–nucleon induced

experiment even larger values for the Γ_n/Γ_p ratios. However the inclusion of the new channel would bring to extract from the

Table 2: Γ_n/Γ_p ratio.

		(with Garbarino et al. analysis)
	0.39 ± 0.11	Exp KEK 2004
0.87 ± 0.23		Exp KEK 2004
	1.97 ± 0.67	Exp KEK 1995
$1.87^{+0.67}_{-1.16}$		Exp KEK 1995
		$(\pi + \rho + K + K^* + \omega + \eta)$
$0.288 \div 0.341$	$0.343 \div 0.457$	Parreño–Ramos 2001
		$(\pi+K+2\pi+\omega)$
0.53		Jido $et~al.~2001$
		(OPE + 4BPI)
1.14	1.30	Jun et al. 2001
		$(\pi + K + DQ)$
	0.701	Sasaki et al. 2000
		$(\pi + 2\pi/\rho + 2\pi/\sigma)$
0.36		Itonaga <i>et al.</i> 1998
$^{12}_{\Lambda}\mathrm{C}$	$^{5}_{\Lambda}{ m He}$	Ref. and Model

Effect of final state interaction (FSI) on the spectra of emitted nucleons

Monte Carlo simulation to describe nucleon rescattering inside the nucleus. Nucleon energy/momentum distributions have been calculated by using a

039903 (E); Garbarino, Parreño, Ramos, PRL 91 (2003) 112501, PRC 69 [Refs.: Ramos, Vicente-Vacas, Oset, PRC 55 (1997) 735; PRC 66 (2002) $(2004) \ 054603$

Study of the nucleon distributions in the NMWD of ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C hypernuclei, in particular:

- Single nucleon energy spectra
- NN angular and energy correlations

Main ingredients:

- 1. Finite nucleus treatment for $\Lambda n \to nN$
- (OME= $\pi + \rho + K + K^* + \omega + \eta$)

[Parreño, Ramos, Bennhold, PRC 56 (1997) 339; Parreño, Ramos, PRC 65

Polarization propagator method in LDA for $\Lambda NN \to nNN$ (correlated

OPE)

 $(2002) \ 015204$

[Alberico, de Pace, Garbarino, Ramos, PRC 61 (2000) 044314]

8. Intranuclear Cascade calculation

Figure 9: Single-proton kinetic energy spectra for the non-mesonic decay of $^5_\Lambda {
m He}$ $(\Gamma_n/\Gamma_p = 0.46)$

Figure 10: Single-proton kinetic energy spectra for the non-mesonic decay of $^{12}_{\Lambda}{\rm C}$ ¸Ζ 0.05 0.15 0.25 0.35 0, 9 ο.ω 0. 4 20 40 ${
m T_p}^{60}~({
m MeV})$ NSC97f IN+2N+FSI IN+FSI 1N without FSI 6 120 140

 $(\Gamma_n/\Gamma_p=0.34)$

 $^{12}_{\Lambda}$ C. Data from Kim et al., PRC 68 (2003) 065201. Figure 11: Single-neutron kinetic energy spectra for the non-mesonic decay of

Number of primary nucleons:

$$N_n^{
m wd} \propto 2\Gamma_n + \Gamma_p$$

 $N_p^{
m wd} \propto \Gamma_p$

$$\frac{\Gamma_n}{\Gamma_p} \equiv \frac{1}{2} \left(\frac{N_n^{
m wd}}{N_p^{
m wd}} - 1 \right)$$

But, due to FSI

$$\frac{\Gamma_n}{\Gamma_p} \neq \frac{1}{2} \left(\frac{N_n}{N_p} - 1 \right) \equiv R_1(T_N^{\text{th}})$$

 N_n , N_p are the number of nucleons emitted by the nucleus

Table 3: Predictions for $R_1(T_N^{\text{th}})$ for $^5_{\Lambda}\text{He}$.

OMEf	OMEa	OPE		
0.19	0.15	0.04	0	
0.40	0.32	0.13	30	$T_N^{ m th}~({ m MeV})$
0.49	0.39	0.16	60	
0.46	0.34	0.09	Γ_n/Γ_p	

 $KEK - E462: R_1(60 \text{ MeV}) = 0.6 \pm 0.2 \text{ (preliminary)}$

[H. Bhang, HYP2003]

$_{\Lambda}^{5}$ He – 1N+2N induced

nn, np and pp pairs emitted per NMWD of $^{5}_{\Lambda}$ He. Figure 12: ANGULAR CORRELATIONS: Opening angle distributions of

$^{12}_{\Lambda}$ C - 1N+2N induced

nn, np and pp pairs emitted per NMWD of $^{12}_{\Lambda}\mathrm{C}$. Figure 13: ANGULAR CORRELATIONS: Opening angle distributions of

of $^{12}_{\Lambda}$ C. Figure 14: ENERGY CORRELATIONS of np pairs emitted per NMWD

s-shell hypernuclei and $\Delta I = 1/2$ rule

[Ref.: W.M.Alberico, G.Garbarino, PL B486 (2000) 362]

the validity of the $\Delta I = 1/2$ rule. Analysis of the non-mesonic decays in s-shell hypernuclei allows to test

few $\Lambda N \to NN$ transitions are allowed In these hypernuclei the ΛN pair is in L=0 relative state, hence only a

phenomenological model of Block and Dalitz

mean free path. homogeneous system of thickness ds is $dP = ds/\lambda$, where $\lambda = 1/(\sigma \rho)$ is the The interaction probability of a particle which crosses an infinite

In the process $\Lambda N \to NN$, the width $\Gamma_{\rm NM} = dP_{\Lambda N \to NN}/dt$ is:

$$\Gamma_{\rm NM} = v\sigma\rho$$

v = ds/dt being the Λ velocity.

In nucleus of density $\rho(\vec{r})$:

$$\Gamma_{
m NM} = \langle v\sigma \rangle \int dec{r}
ho(ec{r}) \mid \psi_{
m A}(ec{r}) \mid^2$$

⟨⟩ is average over spin and isospin states.

Non-mesonic width $\Gamma_{\text{NM}} = \Gamma_n + \Gamma_p$ of the hypernucleus $^{A+1}_{\Lambda}Z$ reads:

$$\Gamma_{\text{NM}}\binom{A+1}{\Lambda}Z) = \frac{N\overline{R}_n\binom{A+1}{\Lambda}Z) + Z\overline{R}_p\binom{A+1}{\Lambda}Z}{A}\rho_A$$

(proton-induced) process. R_n (R_p) being spin-averaged rate for the neutron-induced

By introducing the rates R_{NJ} for the spin-singlet (R_{n0}, R_{p0}) and

spin-triplet (R_{n1}, R_{p1}) elementary $\Lambda N \to NN$ interactions:

$$\Gamma_{\text{NM}}({}_{\Lambda}^{3}\text{H}) = (3R_{n0} + R_{n1} + 3R_{p0} + R_{p1}) \frac{\rho_{2}}{8},$$

$$\Gamma_{\text{NM}}({}_{\Lambda}^{4}\text{H}) = (R_{n0} + 3R_{n1} + 2R_{p0}) \frac{\rho_{3}}{6},$$

$$\Gamma_{\text{NM}}({}_{\Lambda}^{4}\text{He}) = (2R_{n0} + R_{p0} + 3R_{p1}) \frac{\rho_{3}}{6},$$

$$\Gamma_{\text{NM}}({}_{\Lambda}^{5}\text{He}) = (R_{n0} + 3R_{n1} + R_{p0} + 3R_{p1}) \frac{\rho_{4}}{6}.$$

 $^{3}_{\Lambda}$ H and $^{5}_{\Lambda}$ He). (total hypernuclear angular momentum is 0 for $^4_\Lambda H$ and $^4_\Lambda He$ and 1/2 for

Rates associated to the partial—wave transitions:

$$R_{n0} = R_n(^1S_0) + R_n(^3P_0),$$

 $R_{p0} = R_p(^1S_0) + R_p(^3P_0),$
 $R_{n1} = R_n(^3P_1),$
 $R_{p1} = R_p(^3S_1) + R_p(^1P_1) + R_p(^3P_1) + R_p(^3D_1),$

From angular momentum coupling and assuming $\Delta I = 1/2$ it follows:

$$R_{n1}/R_{p1} \le R_{n0}R_{p0} = 2$$

For pure $\Delta I = 3/2$ transitions, the factors 2 are replaced by 1/2 and by further introducing the ratio:

$$r = \frac{\langle I_f = 1 || A_{1/2} || I_i = 1/2 \rangle}{\langle I_f = 1 || A_{3/2} || I_i = 1/2 \rangle}$$

for a general $\Delta I = 1/2 - \Delta I = 3/2$ mixture one gets:

$$\frac{R_{n1}}{R_{p1}} = \frac{4r^2 - 4r + 1}{2r^2 + 4r + 2 + 6\lambda^2} \le \frac{R_{n0}}{R_{p0}} = \frac{4r^2 - 4r + 1}{2r^2 + 4r + 2},$$

With:

$$\lambda = \frac{\langle I_f = 0 || A_{1/2} || I_i = 1/2 \rangle}{\langle I_f = 1 || A_{3/2} || I_i = 1/2 \rangle}$$

example, for ${}_{\Lambda}^{5}$ He: The partial rates supply the Γ_n/Γ_p ratios for s-shell hypernuclei. For

$$\frac{\Gamma_n}{\Gamma_p} {5 \choose \Lambda} \text{He} = \frac{R_{n0} + 3R_{n1}}{R_{p0} + 3R_{p1}}$$

a sizeable violation of $\Delta I = 1/2$ rule but more precise measurements are detailed knowledge of the interaction mechanism. There are indications for spin and isospin behaviour of the $\Lambda N \to NN$ interaction without a needed, especially for $^3_\Lambda H$ and $^4_\Lambda H$. NB: from these relations and experimental data it is possible to extract the

Experimental data and $\Delta I = 1/2$ rule

which have the smallest experimental uncertainties: Determine the rates $R_{N,J}$ by fitting experimental data for the observables

$$\Gamma_{\text{NM}}({}_{\Lambda}^{4}\text{H}), \quad \Gamma_{\text{NM}}({}_{\Lambda}^{4}\text{He}), \quad \Gamma_{\text{NM}}({}_{\Lambda}^{5}\text{He}), \quad \frac{\Gamma_{n}}{\Gamma_{p}}({}_{\Lambda}^{4}\text{He})$$

following partial rates (the decay widths are considered in units of the free After solving previous equations for these quantities, we obtained the

Λ decay width):

$$R_{n0} = (4.7 \pm 2.1) \,\text{fm}^3,$$

 $R_{p0} = (7.9^{+16.5}_{-7.9}) \,\text{fm}^3,$
 $R_{n1} = (10.3 \pm 8.6) \,\text{fm}^3,$
 $R_{p1} = (9.8 \pm 5.5) \,\text{fm}^3,$
 $\overline{R}_n (^5_{\Lambda}\text{He}) \equiv \frac{1}{4} (R_{n0} + 3R_{n1}) = (8.9 \pm 6.5) \,\text{fm}^3,$
 $\overline{R}_p (^5_{\Lambda}\text{He}) \equiv \frac{1}{4} (R_{p0} + 3R_{p1}) = (9.3 \pm 5.8) \,\text{fm}^3,$

For the spin-singlet and spin-triplet ratios we have then:

$$R_{n0}/R_{p0} = 0.6^{+1.3}_{-0.6}$$

$$R_{n1}/R_{p1} = 1.0^{+1.1}_{-1.0}$$

while the ratios of the spin—triplet to the spin-singlet interaction rates are:

$$\frac{R_{n1}}{R_{n0}} = 2.2 \pm 2.1$$

$$\frac{R_{p1}}{R_{p0}} = 1.2_{-1.2}^{+2.7}$$

possible violation of the $\Delta I = 1/2$ rule and the spin-dependence of the transition rates. Above equations are still compatible with with the $\Delta I = 1/2$ rule. The large uncertainties do not allow to draw definite conclusions about the

By using the above results we can predict the neutron to proton ratio for

 $^3_{\Lambda}$ H, $^4_{\Lambda}$ H and $^5_{\Lambda}$ He, which turn out to be:

$$\frac{\Gamma_n}{\Gamma_p} {\binom{3}{\Lambda}}{H} = 0.7^{+1.1}_{-0.7},$$

$$\frac{\Gamma_n}{\Gamma_p} {\binom{4}{\Lambda}}{H} = 2.3^{+5.0}_{-2.3},$$

$$\frac{\Gamma_n}{\Gamma_p} {\binom{5}{\Lambda}}{He} = 0.95 \pm 0.92,$$

and, by using $\rho_2 = 0.001 \text{ fm}^{-3}$

 $\Gamma_{\rm NM}(^3_{\Lambda}{\rm H}) = 0.007 \pm 0.006.$

Non-mesonic decay of polarized Λ -hypernuclei

THE ASYMMETRY PUZZLE

Proton intensity from NMWD of Polarized Λ -hypernuclei is:

$$I(\Theta, J) = I_0(J) \left[1 + \mathcal{A}(\Theta, J) \right]$$

where:

$$I_0(J) = \frac{\operatorname{Tr}(\mathcal{M}\mathcal{M}^{\dagger})}{2J+1} = \frac{\sum_M \sigma(J, M)}{2J+1}$$

is the (isotropic) intensity for an unpolarized hypernucleus and

$$\mathcal{A}(\Theta,J) = P_y(J) \, \frac{3}{J+1} \, \frac{\mathrm{Tr}(\mathcal{M} S_y \mathcal{M}^\dagger)(\Theta)}{\mathrm{Tr}(\mathcal{M} \mathcal{M}^\dagger)} = P_y(J) \, A_y(J) \cos \Theta.$$

is the asymmetry of the angular distribution for the outgoing protons.

$P_y = \text{hypernuclear polarization}$

 $A_y = \text{hypernuclear asymmetry parameter}$

$$A_{y} = \frac{3}{J+1} \frac{\sum_{M} M \sigma(J, M)}{\sum_{M} \sigma(J, M)}$$

In the shell model weak-coupling scheme

$$\mathcal{A}(\Theta) = p_{\Lambda} a_{\Lambda} \cos \Theta$$

where

$$p_{\Lambda} = \begin{cases} -\frac{J}{J+1} P_{y} & \text{if } J = J_{C} - \frac{1}{2} \\ P_{y} & \text{if } J = J_{C} + \frac{1}{2} \end{cases}$$

$$\Lambda \text{ polarization}$$

 $A_y if J = J_C + \frac{1}{2}$ intrinsic Λ asymmetry parameter

 $\left(-\frac{J+1}{J}A_{y}\right)$ if $J=J_{C}-\frac{1}{2}$

Experiments measure

$$\mathcal{A}^{\mathrm{M}}(0^{\circ}) = \frac{I^{\mathrm{M}}(0^{\circ}) - I^{\mathrm{M}}(180^{\circ})}{I^{\mathrm{M}}(0^{\circ}) + I^{\mathrm{M}}(180^{\circ})}$$

and determine

$$a_{\Lambda}^{ ext{M}}=rac{\mathcal{A}^{ ext{M}}(0^{\circ})}{p_{\Lambda}}$$

by using an indirect measurement (${}_{\Lambda}^{5}$ He) or a theoretical evaluation (${}_{\Lambda}^{12}$ C)

The relations

$$I^{\mathrm{M}}(\Theta) = I_{0}^{\mathrm{M}} \left[1 + \mathcal{A}^{\mathrm{M}}(\Theta) \right]$$

 $\mathcal{A}^{\mathrm{M}}(\Theta) = p_{\mathrm{M}} a_{\mathrm{M}}^{\mathrm{M}} \cos \Theta$

are thus assumed.

Table 4: Theory vs experiment for a_{Λ} .

	0.07 ± 0.08	KEK-E462 (prel.)
-0.44 ± 0.32		KEK-E508 (prel.)
	0.24 ± 0.22	KEK-E278
-0.9 ± 0.3		KEK-E160 a_{Λ}^{M}
-0.73	-0.68	OME
-0.64	-0.61	$\pi + K$
-0.34	-0.25	OPE
		A. Parreño et al.
	-0.68	$\pi + K + DQ$
	-0.36	$\pi + K$
	-0.44	OPE
		K. Sasaki et al. a_{Λ}
$^{12}_{\Lambda}\mathrm{C}$	$^{5}_{\Lambda}\mathrm{He}$	

Inconsistencies at the experimental level

Due to FSI, one expects $|a_{\Lambda}| > |a_{\Lambda}^{\mathrm{M}}|$

RESULTS FOR THE ASYMMETRY

The calculated proton intensities are well fitted by

$$I^{\mathcal{M}}(\Theta) = I_0^{\mathcal{M}} \left[1 + p_{\mathcal{M}} a_{\mathcal{M}}^{\mathcal{M}} \cos \Theta \right]$$

where

 $I_0^{
m M}={
m total}\,{
m number}\,{
m of}\,{
m protons}\,{
m emitted}\,{
m per}\,{
m NMWD}$

Maruta et al., nucl-ex/0402017, HYP2003] Table 5: Asymmetry parameters for ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C. Preliminary data are from [T.

KEK-E508	KEK-E462	$T_N^{\mathrm{Th}} = 50 \; \mathrm{MeV}$	$T_N^{\mathrm{Th}} = 30 \mathrm{\ MeV}$	$T_N^{\mathrm{Th}}=0$	OME	$T_N^{\mathrm{Th}} = 50 \mathrm{\ MeV}$	$T_N^{\mathrm{Th}} = 30 \ \mathrm{MeV}$	$T_N^{\mathrm{Th}}=0$	OPE		
		0.60	0.77	1.28	0.69	0.78	0.99	1.56	0.92	$I_0^{ m M}$	$^5_\Lambda{ m He}$
	0.07 ± 0.08	-0.51	-0.45	-0.29	-0.68	-0.18	-0.16	-0.11	-0.25	$a_{\Lambda}^{ m M}$	
		0.66	1.05	2.78	0.75	0.78	1.23	3.15	0.93	$I_0^{ m M}$	$^{12}_{\Lambda}\mathrm{C}$
-0.44 ± 0.32		-0.49	-0.36	-0.13	-0.73	-0.26	-0.20	-0.03	-0.34	$a_{\Lambda}^{ m M}$	